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ABSTRACT
In this paper we investigate bottlenecks in adaptive dynamic surface control (DSC) and unveil an
innovative consensus tracking controller to track the desired trajectory for a class of fractional-order
multi-agent systems with non-linear dynamics. The study derives an algorithm by implementing
graph theory and the DSC method. The main approaches in the control of fractional-order systems
are the DSC and the adaptive DSC techniques to avoid the computational complexity of fractional-
order virtual control law. According to these techniques, a virtual control law is formulated and the
proposed controller is passed through a fractional-order dynamic surface. By employing the DSC
and adaptive DSC laws, we demonstrate that the desired consensus tracking between agents can be
ensured. To verify the performance of the new approach, we simulate the desirable scenarios and
evaluate the results against a popular adaptive sliding mode technique.
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Introduction

In recent years, research on multi-agent systems has
attracted the attention and deployment of this technol-
ogy in different fields such as engineering, physics and
biology (Li & Tan, 2019; Shang, 2019) is gaining greater
momentum. Agents in multi-agent systems exchange
information via communication graphs or topology.

Our survey of recent literature shows that control of
vehicles and target tracking are topics that are focused
on (Karimi & Lu, 2021; Lu et al., 2022). Multi-agent sys-
tems are also emerging as important research fields due
to their many desirable applications and works on these
systems include a consensus analysis by (Cui et al., 2016;
Han et al., 2020; Shang, 2018; Yaghoubi, 2020; Yaghoubi
& Talebi, 2020a, 2020b), formation (Liu et al., 2021; Wang
et al., 2020; Xiong & Gu, 2021; Zhao et al., 2022), flocking
(Amirian & Shamaghdari, 2021), swarming (Wang et al.,
2019) and synchronization (Wen et al., 2021).

Consensus means that all the agents reach a com-
mon value or a common path and this procedure is
seen as an important and interesting topic for further
study. In general, the consensus problem is divided into
leader-following consensus and leaderless consensus (Ni
& Cheng, 2010). The neural network methods (Wu et al.,
2019, 2021) are examined for leader-following consensus
by (G. Wen et al., 2016). In this paper the leader-following
consensus is investigated for fractional-order non-linear
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multi-agent systems, as we have noted is currently a sub-
ject of intense exploration.

The fractional-order systemsare controlledmoreprob-
lematic and difficult than integer-order systems and this
systemhas an operational point. Among themany impor-
tant properties of fractional-order systems (Gao & Liao,
2013), their versatile memory makes them suitable for
applications such as robotics, bioengineering and eco-
nomic systems modelling (Podlubny, 1998; Shen & Lam,
2014).

One of the most popular techniques for controlling
non-linear systems is called the backstepping control
method which is investigated for integer-order systems
in (Liu et al., 2015; Yu et al., 2021). This technique is
extended to fractional-order systems by implementing
the fractional filter in (H. Liu et al., 2020; Wei et al., 2015).
The drawback with this approach is that it gives rise to a
major problem by fractional derivatives repetition which
is called the ‘explosion of complexity’.

To deal with the ‘explosion of complexity’, Dynamic
Surface Control was introduced in (Yip & Hedrick, 1998),
which exhibited the potential to control a non-linear sys-
temwithout requiring the derivative of the previous step
virtual input, as disclosed in (Yang & Yue, 2017; Zhao
et al., 2021). So, the fractional-order DSC method is used
to avoid the computational complexity of fractional-order
virtual control law.
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In short, in this paper, a dynamic surface controller
(DSC) and an adaptive dynamic surface controller (Adap-
tive DSC) are proposed for fractional-order multi-agent
systems to obtain consensus and track the desired trajec-
tory.

The main contributions of our proposal are as fol-
lows:

(1) The dynamic surface control was extended and
applied to fractional-ordermulti-agent systems. Thus,
this provided the basis for our stability analysis pro-
posal.

(2) The formulated consensus algorithm for tracking
fractional-order multi-agent non-linear systems via
DSC.

(3) The formulated consensus algorithm for tracking
fractional-order multi-agent non-linear systems with
unknown parameters via adaptive DSC.

(4) Agents with unknown parameters can track the
desired trajectory and achieve consensus with adap-
tive DSC in less time.

The rest of the paper is organized as follows: In section
II, we define graph theory and examine the structure and
application of this important tool. Next, we present some
lemmas and include definitions of fractional-order cal-
culus in Section III. We move on to Section IV, in which
we lay out our problem formulation and follow it up by
providing the proof of stability in Section V. Section VI is
devoted to the simulation of our proposed schemes and
the comparison of results against competing approaches.
The paper concludes in Section VII, highlighting its
findings.

Graph theory

Let us begin this section by providing definitions of
graph theory (Gu & Tian, 2019). The communication
graph describes the connection between agents and is
expressed as G = (V , E,A), where E ⊆ V × V denotes the
edge set and the node-set with n agents denoted as V =
{ν1, ν2, . . . , νn}. Ni = {νj ∈ V : (νj, νi) ∈ E} is the neigh-
bour set of the agent i. One of the essential matrices in
graph theory is the adjacency matrix which is defined as
A = [aij] ∈ R

n×n, withaij > 0 if (νj, νi) ∈ E, otherwiseaij =
0. Another essential matrix is Laplacian which is formu-

lated as L = D − A, where D = diag
{∑n

j=1 aij
}

∈ R
n×n.

There is still another matrix which is related to informa-
tion exchange between leader and followers, and is rep-
resented as B = diag(b1, b2, . . . , bn), where bi = 1 if the
agent i receives information from the leader, otherwise
bi = 0.

Fractional calculus

Let us first present some fractional-order definitions. The
Caputo fractional derivative form − 1 < α < m,m ∈ N

+
is shown as c

0Dα
t x(t) or for simplicity xα(t) which is

defined as follows (Yin et al., 2013):

c
0Dα

t x(t) = 1
�(m − α)

t
∫
0
(t − τ)m−α−1x(m)(τ )dτ , (1)

TheGamma function isdefinedas:�(α) =
+∞
∫
0

τα−1e−τdτ .

The following function is the Mittag-Leffler function
which is formulated for α,β ∈ R as follows (Wang & Yang,
2017):

Eα,β(z) =
∞∑
k=0

zk

�(kα + β)
(2)

The Mittag-Leffler function with α = 1 is converted to
the exponential function. In this section, some operative
lemmas are presented as follows.

Lemma 1.1: (Podlubny, 1998). For the Mittag-Leffler func-
tion, the following inequality holds for0 < α < 2andβ ∈ R
with C ∈ R+: |Eα,β(z)| ≤ C

1+|z| .

Lemma 1.2: For a continuous and derivable function
x(t) ∈ R, the following inequality isdefined for t ≥ t0(Aguila-
Camacho et al., 2014; Li et al., 2010; Zhang et al., 2017):

1
2
c
t0Dα

t x
2(t) ≤ x(t)ct0Dα

t x(t), α ∈ (0, 1) (3)

Lemma 1.3: The following inequality for x(t) ∈ R
n is

established:

c
t0Dα

t (xT (t)Px(t)) ≤ 2xT (t)Pct0Dα
t x(t), α ∈ (0, 1) (4)

with a positive definite symmetric matrix, P ∈ R
n×n.

Lemma 1.4: If for the continuous function V(t), the follow-
ing inequality is established for α ∈ (0, 1]:

Vα(t) ≤ −βV(t) (5)

then

V(t) ≤ Eα(−β(t − t0)
α)V(t0), t ≥ t0 (6)

where β > 0 (Chen et al., 2014).

Problem formulation

Aclass of fractional-ordermulti-agent systems are consid-
ered in this paper inwhich the topology hasN agents. The
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ith agent is modelled as follows (Yang & Yue, 2017):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xα
i1 = fi1(xi1, xi2)
xα
i2 = fi2(xi1, xi2, xi3)
...
xα
i(ni−1) = fi(ni−1)(xi1, . . . , xi(ni−1), xi(ni))
xα
i(ni)

= fi(ni)(xi1, . . . , xi(ni−1), xi(ni), ui)
yi = xi1

(7)

where the state of the agents is xij, i,= 1, . . . ,N , j =
1, . . . , ni and fi,(.) are non-linear functions that satisfy
Assumption 1. The input and output signals are denoted
as ui ∈ R and yi ∈ R for the ith agent.

Assumption 1.1: For function f (x), the Lipschitz condi-
tion is represented as follows with the Lipschitz constant
l: |f (x2) − f (x1)| ≤ l|x2 − x1|, ∀x1, x2 ∈ R,∀t ≥ 0.

As stated above, our objective is to achieve consensus
among agents and synchronize the output of the system
(7), yi with yd , which is the desired trajectory.

Definition 1.1: Formulti-agent systems (7), consensus is
achieved if the following conditions hold:

lim
t→∞ (yi − yd) = 0,

lim
t→∞ (yi − yj) = 0

where i,= 1, . . . ,N , j = 1, . . . , ni.

Controller design

DSC design

In this section, by exploiting the DSC technology a con-
sensus for system (7) will be designed and the Lyapunov
stability analysis will be investigated.

The system (7) can be rewritten as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xα
i1 = xi2 + Fi1(xi1, xi2)
xα
i2 = xi3 + Fi2(xi1, xi2, xi3)
...
xα
i(ni−1) = xi(ni) + Fi(ni−1)(xi1, . . . , xi(ni−1), xi(ni))
xα
i(ni)

= ui + Fi(ni)(xi1, . . . , xi(ni−1), xi(ni), ui)
yi = xi1

(8)

where Fij(xi1, . . . , xi(j+1)) = fij(xi1, . . . , xi(j+1)) − xi(j+1),
Fi(ni)(xi1, . . . , xi(ni−1), xi(ni), ui) = fi(ni)(xi1, . . . , xi(ni−1),
xi(ni), ui) − ui.

Next, let us define a surface error as follows:

si1 =
∑
j∈Ni

aij(yi(t) − yj(t)) + bi(yi(t) − yd(t)) (9)

sij = xij − xdij (10)

where yd is the desired trajectory and xdij is defined later.

Step i1: The fractional-order derivation of si1 is given as
follows:

sαi1 = li(xi2 + Fi1) −
∑
j∈Ni

aij(xj2 + Fj1) − biy
α
d (11)

where li = di + bi. The virtual control law is formulated as
follows:

x̃i2 =
∑

j∈Ni
aij(xj2 + Fj1)

li
+ bi

li
yα
d − Fi1 − ki1si1 (12)

where ki1 > 0. xdi2 is obtained by applying the first-order
filter.

τi2xα
di2

+ xdi2 = x̃i2,
xdi2(0) = x̃i2(0)

(13)

where τi2 is the time constant of the filter.
Generally, other steps are obtained as follows.
Step ij: The fractional-order derivation of sij (14) is

defined as follows:

sαij = xα
ij − xα

dij

= xi(j+1) + Fij − xα
dij

(14)

The virtual control law is expressed as follows:

x̃i(j+1) = xα
dij

− Fij − kijsij (15)

where kij > 0. xdi(j+1) is computed by applying the first-
order filter.

τi(j+1)xα
di(j+1)

+ xdi(j+1) = x̃i(j+1),

xdi(j+1) (0) = x̃i(j+1)(0)
(16)

Step i(ni): The fractional-order derivation of si(ni) is given
as follows:

sαi(ni) = xα
i(ni) − xα

di(ni)

= ui + Fi(ni) − xα
di(ni)

(17)

Hence, the control law is chosen as follows:

ui = xα
di(ni)

− Fi(ni) − ki(ni)si(ni) (18)

Theorem 1.1: The group of followers with system (8) track
leader and the consensus problem is achieved with con-
troller (18).

Proof: The ith Lyapunov function is considered as fol-
lows:

Vi = 1
2

ni∑
j=1

s2ij +
1
2

ni−1∑
j=1

e2i(j+1) (19)

where ei(j+1) = xdi(j+1) − x̃i(j+1).
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The fractional-order derivative of V is obtained as fol-
lows:

Vα
i ≤

ni∑
j=1

sijsαij +
ni−1∑
j=1

ei(j+1)eα
i(j+1)

= si1sαi1 +
ni∑
j=2

sijsαij +
ni−1∑
j=1

ei(j+1)eα
i(j+1)

= (li(xi2 + Fi1) − ∑
j∈Ni

aij(xj2 + Fj1) − biyα
d )si1

+
ni∑
j=2

sijsαij +
ni−1∑
j=1

ei(j+1)eα
i(j+1)

(20)
The fractional-order derivation of ei(j+1) by applying (15)
is obtained as follows:

eα
i(j+1) = xα

di(j+1)
− x̃α

i(j+1) = −
e2i(j+1)

τi(j+1)

+ kijs
α
ij + Fα

ij − (xα
di(j+1)

)
α︸ ︷︷ ︸

Bi(j+1)

(21)

By applying (21), (20) is derived as follows:

Vα
i ≤ (lixi2 − ki1si1 − lix̃i2)si1 +

ni∑
j=2

sijsαij

+
ni−1∑
j=1

ei(j+1)eα
i(j+1)

= li(si1si2 + ei2si1 − ki1s2i1)

+
ni−1∑
j=2

(sijsi(j+1) + sijei(j+1) − kijs2ij)

−ki(ni)s
2
i(ni)

+
ni−1∑
j=1

(
− e2i(j+1)

τi(j+1)
+ ei(j+1)Bi(j+1)

)
(22)

The following inequalities are established:

sijsi(j+1) ≤
s2ij
4

+ s2i(j+1) (23)

ei(j+1)Bi(j+1) ≤
M2

i(j+1)

2βi(j+1)
+

βi(j+1)e2i(j+1)

2
(24)

where β is the positive constant and max(B) = M .
By applying (23) and (24), (22) can be rewritten as

follows:

Vα
i ≤ li

(
s2i1
4

+ s2i2 + s2i1
4

+ e2i2 − ki1s
2
i1

)
− ki2s

2
i2 + s2i2

4

+ s2i3 + s2i2
4

+ e2i3

+
ni−1∑
j=3

(
s2ij
4

+ s2i(j+1) +
s2ij
4

+ e2i(j+1) − kijs
2
ij

)

− ki(ni)s
2
i(ni)

+
ni−1∑
j=1

(
−
e2i(j+1)

τi(j+1)
+

M2
i(j+1)

2βi(j+1)
+

βi(j+1)e2i(j+1)

2

)

= li

(
1
2

− ki1

)
s2i1 +

(
li − ki2 + 1

2

)
s2i2

+
ni−1∑
j=3

(
3
2

− kij

)
s2ij + (−ki(ni) + 1)s2i(ni) + lie

2
i2

+
ni−1∑
j=2

e2i(j+1) (1)

+
ni−1∑
j=1

(
−
e2i(j+1)

τi(j+1)
+

M2
i(j+1)

2βi(j+1)
+

βi(j+1)e2i(j+1)

2

)
(25)

Equation (25) can be rewritten as follows:

Vα
i ≤ li

( 1
2 − ki1

)
s2i1 + (

li − ki2 + 1
2

)
s2i2

+
ni−1∑
j=3

( 3
2 − kij

)
s2ij + (−ki(ni) + 1)s2i(ni)

−
ni−1∑
j=1

ξi(j+1)e2i,j+1 +
ni−1∑
j=1

M2
i(j+1)

2βi(j+1)

(26)

where

ξi(j+1)+1+ βi(j+1)

2
= 1

τi(j+1)
, j=2, . . . , ni − 1, ξi(j+1) > 0

and ξi2 + li + βi2
2 = 1

τi2
, ξi2 > 0.

Choose V = ∑N
i=1 Vi then its fractional-order deriva-

tive becomes:

Vα ≤
N∑
i=1

li
( 1
2 − ki1

)
s2i1 +

N∑
i=1

(
li − ki2 + 1

2

)
s2i2

+
N∑
i=1

ni−1∑
j=3

( 3
2 − kij

)
s2ij +

N∑
i=1

(−ki(ni) + 1)s2i(ni)

−
N∑
i=1

ni−1∑
j=1

ξi(j+1)e2i(j+1) +
N∑
i=1

ni−1∑
j=1

M2
i(j+1)

2βi(j+1)

≤ −γV + Q
(27)

where

γ = min{γ1, . . . ,μN},

γi = {2liki1 − li, 2ki2 − 2li − 1, 2ki(ni) − 2,
2min

{
ki3 − 3

2 , . . . , ki(ni−1) − 3
2

}
2min{ξi2, . . . , ξi(ni)}}

and Q = ∑N
i=1
∑ni−1

j=1
M2
i(j+1)

2βi(j+1)
.

By applying Lemma 3.1 and (Liu et al., 2019; Liu et al.,
2016), (28) can be obtained as follows:

V ≤ V(0)Eα,1(−γ tα) + QtαEα,α+1(−γ tα)

≤ V(0)C1
1+γ tα + QC2tα

1+γ tα ≤ QC2
γ

(28)

where C1 > 0,C2 > 0. Hence V(t) is bounded and |si1| ≤√
2QC2

γ
. Under this condition the error converges to a

small value by designing suitable parameters; therefore;
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the consensus errors reach a point in the vicinity of zero
and the systems are asymptotically stable. This proves
that the consensus problem is solvable for the system (8)
by applying the controller (18). �

Adaptive DSC design

In this section, the adaptive DSC controller is applied to
the system (8) to achieve consensus then the Lyapunov
stability analysis will be investigated for systems with
unknown parameters.

The system (8) can be rewritten with unknown param-
eters as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xα
i1 = xi2 + θi1Fi1(xi1, xi2)
xα
i2 = xi3 + θi2Fi2(xi1, xi2, xi3)
...
xα
i(ni−1) = xi(ni) + θi(ni−1)Fi(ni−1)(xi1, . . . , xi(ni−1), xini)
xα
ini

= ui + θini Fini(xi1, . . . , xi(ni), , ui)
yi = xi1

(29)
where θij, j = 1, . . . , ni are unknown parameters. The sur-
face error is defined as (9) and (10).

Step i1: The fractional-order derivation of si1 is given as
follows:

sαi1 = li(xi2 + θ̂i1Fi1) −
∑
j∈Ni

aij(xj2 + θ̂j1Fj1) − biy
α
d (30)

where li = di + biand θ̂ij, j = 1, . . . , ni are estimates for
constant parameters θij. The virtual control law is selected
as follows:

x̃i2 =
∑

j∈Ni
aij(xj2 + θ̂j1Fj1)

li
+ bi

li
yα
d − θ̂i1Fi1 − ki1si1

(31)
where ki1 > 0. xdi2 is obtained by applying the first-order
filter as (13).

The parameter update law is chosen as follows:

θ̂ α
i1 = ρi1si1

⎛
⎝liFi1 −

∑
j∈Ni

aijFj1

⎞
⎠ (32)

where ρi1 are positive design parameters.
Generally, other steps are obtained as follows:
Step i, j: The fractional-orderderivationof sij is expressed

as follows:

sαij = xα
ij − xα

dij

= xi(j+1) + θ̂ijFij − xα
dij

(33)

The virtual control law is selected as follows:

x̃i(j+1) = xα
dij

− θ̂ijFij − kijsij (34)

where kij > 0. xdi(j+1) is computed by implementing the
first-order filter as (16).

The parameter update law is chosen as follows:

θ̂ α
ij = ρijsijFij (35)

where ρij are positive design parameters.
Step i(ni): The fractional-order derivation of si(ni) is

represented as follows:

sαi(ni) = xα
i(ni)

− xα
di(ni)

= ui + θ̂i(ni)Fi(ni) − xα
di(ni)

(36)

Hence, the control law is chosen as follows:

ui = xα
di(ni)

− θ̂i(ni)Fi(ni) − ki(ni)si(ni) (37)

The parameter update law is chosen as follows:

θ̂ α
i(ni)

= ρi(ni)si(ni)Fi(ni) (38)

where ρi(ni) are positive design parameters.

Theorem 1.2: The group of followers with the system (29)
track the desired trajectory and the consensus problem is
achieved by the controller (37) and the adaptive laws (32),
(35) and (38)with suitable design parameters.

Proof: The ith Lyapunov function is considered as fol-
lows:

Vi = 1
2

ni∑
j=1

s2ij +
1
2

ni−1∑
j=1

e2i(j+1) + 1
2

ni∑
j=1

1
ρij

θ̃2ij (39)

where ei(j+1) = xdi(j+1) − x̃i(j+1) and θ̃ij = θij − θ̂ij.
The fractional-order derivative of V is obtained as fol-

lows:

Vα
i ≤

ni∑
j=1

sijsαij +
ni−1∑
j=1

ei(j+1)eα
i(j+1) +

ni∑
j=1

1
ρij

θ̃ijθ̃
α
ij

= si1sαi1 +
ni∑
j=2

sijsαij +
ni−1∑
j=1

ei(j+1)eα
i(j+1)

+ 1
ρi1

θ̃i1θ̃
α
i1 +

ni∑
j=2

1
ρij

θ̃ijθ̃
α
ij

= (li(xi2 + θ̂i1Fi1) − ∑
j∈Ni

aij(xj2 + θ̂j1Fj1) − biyα
d )si1

+
ni∑
j=2

sijsαij +
ni−1∑
j=1

ei(j+1)eα
i(j+1) + 1

ρi1
θ̃i1θ̃

α
i1

+
ni∑
j=2

1
ρij

θ̃ijθ̃
α
ij

(40)
The fractional-order derivation of ei(j+1) canbe computed
by employing (34) as follows:

eα
i(j+1) = xα

di(j+1)
− x̃α

i(j+1)

= − e2i(j+1)
τi(j+1)

+ kijs
α
ij + θ̂ijF

α
ij + θ̂ α

ij Fij − (xα
di(j+1)

)
α︸ ︷︷ ︸

Bi(j+1)

(41)
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By applying (41), (32) and (35), (40) can be expressed as
follows:

Vα
i ≤ (lixi2 − ki1si1 − lix̃i2)si1 +

ni∑
j=2

sijsαij

+
ni−1∑
j=1

ei(j+1)eα
i(j+1)

= li(si1si2 + ei2si1 − ki1s2i1)

+
ni−1∑
j=2

(sijsi(j+1) + sijei(j+1) − kijs2ij)

−ki(ni)s
2
i(ni)

+
ni−1∑
j=1

(
− e2i(j+1)

τi(j+1)
+ ei(j+1)Bi(j+1)

)
(42)

By applying the adaptive laws (32), (35) and (38), it can be
shown that (42) is the sameas (22). Hence,V(t) is bounded

and |si1| ≤
√

2QC2
γ

. In this case the error converges to a

small value by designing suitable parameters, and, there-
fore, the consensus errors approach a value in the vicinity
of zero and the systems being asymptotically stable. This
shows that the consensus problem is solvable for the sys-
tem (29) by applying the controller (37) and the adaptive
laws (32), (35) and (38).

To summarize, a dynamic surface controller (DSC)
was proposed for fractional-order multi-agent systems to
obtain consensus and track the desired trajectory. Next,
an adaptive dynamic surface controller (Adaptive DSC)
was proposed for these systems with unknown param-
eters, so consensus and tracking the desired trajectory
were proved. �

Simulation results

In this section, we provide simulation results of scenar-
ios and demonstrate the validity of our theoretical work
regarding the DCS controller.

A topology of agents with four followers and one
leader who exchange information with the first agent is
shown in Figure 1. Note that thedynamics of followers are
as defined in (2) and parameters are set as α = 0.95, ni =
3, Fi1(.) = xi2(t), Fi2(.) = xi3(t), Fi3(.) = xi3(t)
sin(t), i = 1, . . . , 4. A desired trajectory is yd = sin(t). for
which the initial conditions are set as x1(0) =

Figure 1. The graph of the agents.

[
6 4 0

]T
, x2(0) = [

3 2 6
]T
, x3(0) = [

1 0 3
]T
,

x4(0) = [−3 −3 1
]T
. Next, the design parameters are

defined as kij = 10, τi(j+1) = 0.1, ρij = 2 for i = 1, 2, 3, 4
and j = 1, 2, 3.

Figures 2–4 display the results which are the basis
for comparing the performance of the proposed scheme
against that of the competing model. Let us begin with
Figure 2, which depicts the behaviour of the output tra-
jectories of the agents and the desired trajectory for
the proposed DSC controller. Now, consider Figures 3
and 4, which show the states of the agents. It is clear
that the output trajectories of the agents track the
desired trajectory and, the consensus is obtained after
about 0.2 s.

For more comparison and to show the efficiency of
the proposed controller, the simulation result of agents
with an adaptive sliding mode controller (Yaghoubi &
Talebi, 2019) is depicted in Figure 5. Agents with known
parameters are controlled to achieve consensus with an
adaptive sliding mode controller in which the param-
eters of controllers are unknown so the adaptive law
of these parameters is also designed. The adaptive slid-
ing mode controller and adaptive law are given as
follows:

ui(t) = ...
yd + (ÿd − ẍi) + (ẏd − ẋi)

− θik

⎛
⎝ n∑

j=1

aij[xi − xj]

⎞
⎠

− ω.sgn

⎛
⎝ n∑

j=1

aij[xi − xj]

⎞
⎠ ,

i, j = 1, 2, . . . , 4, i 
= j

(43)

θα
i = βi

⎛
⎝k

n∑
j=1

aij[xi − xj]

⎞
⎠T ⎛⎝k

n∑
j=1

aij[xi − xj]

⎞
⎠ (44)

Evidently, in this case consensus takes 2.5 s which is
longer compared to thenewmethod, thus confirming the
latter’s outperformance.

Further simulation results from the adaptive DSC con-
troller are shown in Figures 6–9. The design parame-
ters are defined as kij = 20, τi(j+1) = 0.02, ρij = 1 for i =
1, 2, 3, 4 and j = 1, 2, 3. Beginning with Figure 6, the out-
put trajectories of the agents and the desired trajectory
are shown. Moving on to Figure 7, in which the tracking
errors, denoted by errori = yi − yd , i = 1, 2, 3, 4, charted
and then in FIGURES 8 and 9 states of agents are depicted.
As can be seen, the output trajectories of the agents track
the desired trajectory and the errors converge to a value
in the vicinity of zero.
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Figure 2. Output trajectories of the four agents and desired trajectory (yd) via the DSC controller.

Figure 3. Consensus for xi2(t), i = 1, . . . , 4 via the DSC controller.
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Figure 4. Consensus for xi3(t), i = 1, . . . , 4 via the DSC controller.

Figure 5. Output trajectories of four agents and desired trajectory (yd) via the adaptive sliding mode controller.
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Figure 6. Output trajectories of four agents and desired trajectory (yd) via the adaptive DSC controller.

Figure 7. Tracking errors of agents via adaptive DSC.
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Figure 8. Consensus for xi2(t), i = 1, . . . , 4 via the adaptive DSC controller.

Figure 9. Consensus for xi3(t), i = 1, . . . , 4 via the adaptive DSC controller.
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Conclusion

In this paper, we explored current DSC technologies and
attempted to improve the drawbacks with some of the
studiedpropositions.Wedesigned a novel DSC algorithm
together with an adaptive DSC method to tackle the
consensus problems for fractional-order non-linearmulti-
agent systems. By implementing these new solutions, a
sufficient number of different conditions were examined
to ensure that consensus of fractional-order non-linear
multi-agent systems is achieved and the desired trajec-
tory is tracked by output trajectories of the agents.

Evaluation of simulation results shows our proposals
offer superiority over the tested models in terms of effi-
ciency. In the near future, our next focus will be the study
of cluster consensus for fractional-order non-linear multi-
agent systems via DSC for switching topology.
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